Key phenomena:

1. changing In magnetic thun loop conses induced EMF around loop

$$
\varepsilon_{\text {ind }}=-\frac{d \Phi_{m}}{d t}
$$

if loop is a conductor w/resistance R an induced current will flow

$$
P_{\text {ind }}=\frac{\varepsilon_{\text {ind }}}{R}
$$

2. external currents in wires cause magnetic fields
solenoid: $B=\mu_{0} n T$ along center wire: $B=\frac{\mu_{0} I}{2 \pi r} \quad r=$ dist form wire
nest put them together with external cmrents causing's induced currents

- current thun coil (1) causes B field
- B, will go thun coil (2), causing flex \$z

$$
\Phi_{2}=B_{1} N_{2} A_{2} \quad N_{2}=4 \text { tanks in }
$$

- if B doesn't change, then $\frac{d}{d t} \Phi_{2} \operatorname{coil}(2)$
so to indued ε_{2} in $\operatorname{cosil}(2)$
- if yon move coil (1) closer to coil 2 you will cause a $\frac{d \Phi_{2}}{d t} \Rightarrow \varepsilon_{2}$ induced in (2)
\Rightarrow these coils are said to be "flux linked" now vary I_{1} using variable voltage source, and couple the coils so it's easy to calculate the flux

say they have same length,

$$
\text { so } n_{1}=\frac{N_{1}}{L} \quad \text { ? } \quad u_{2}=\frac{N_{2}}{L}
$$

Br produced inside coil (1)

$$
B=\mu_{0} m_{1} I_{1}(t)
$$

ϕ_{2} is flux though 1 tarn of coil 2 total flux in coil 2 is $\Phi_{2}=N_{2} \Phi_{2} \quad N_{2}$ loops

$$
\begin{aligned}
& \Phi_{2}=B_{1} \cdot A_{2}=B_{1} A \quad\left(A_{1}=A_{2}\right) \\
& \text { so } \Phi_{2}=N_{2} B_{1} A=N_{2} A \mu_{0} n_{1} I_{1}(t)
\end{aligned}
$$

note: Φ_{2} total flux in coil (2) due to
B_{1} from coil (1) is proportional to only physical characteristics of coils

$$
\Phi_{2}=\left(N_{2} n_{1} A_{\mu_{0}}\right) I_{1}
$$

coils that are flux linked always have this:

$$
\Phi_{2} \propto I_{1}
$$

in general it may be difficult to calculate proportionality, but we can usually measure

$$
\Phi_{2}=M I_{1} \quad M \equiv \text { "mutual" inductance }
$$

units of M : $M=\Phi_{2} / I_{1}$ so units are Webus/ampere
this is a Henry

$$
V_{H}=W_{b} / A
$$

ex: 2 coils wldifferent areas

roil 1:
N. tuns Li length A. area
N_{2} tanks
A_{2} area $\left(A_{2}<A_{1}\right)$
L_{2} length $\left(L_{2}<L_{1}\right.$
current I, generates B constant inside coil(1)

$$
B_{1}=\mu_{0} m_{1} T_{1} \quad n_{1}=N_{1} / L_{1}
$$

this B-field goes the rn wil (2)

$$
\begin{aligned}
& \Phi_{2}=B_{1} A_{2} \text { so } \begin{aligned}
\Phi_{2} & =N_{2} B_{1} A_{2} \\
& =\underbrace{}_{M} \mu_{0} n_{1} N_{2} A_{2}
\end{aligned} I_{1} \\
& M=\Phi_{2} / I_{1}=\mu_{0} n_{1} n_{2} L_{2} A_{2} \quad\left(n_{2} L_{2}=N_{2}\right)
\end{aligned}
$$

what if instead yon put current in coil (2) and calculate M ?

$$
B_{2}=\mu_{0} n_{2} I_{2}
$$

$\Phi_{1}=B_{2} \cdot A_{2}$! why not $B_{2} A_{1}$? because B_{2} only exists inside area A_{2}, $x_{0} t A_{1}$ which is $>A_{2}$
So $\Phi_{1}=N_{1}^{\prime} \phi_{1}$ where N_{2}^{\prime} is the loops in coil (1) that overlap with coil 2
$N_{1}^{\prime}=n_{1} L_{2}$ since only L_{2} length has overlap

$$
\text { so } \begin{aligned}
\Phi_{1} & =n_{1} L_{2} \phi_{1}=n_{1} L_{2} A_{2} B_{2} \\
& =n_{1} L_{2} A_{2} \mu_{0} n_{2} I_{2} \\
& =\left(\mu_{0} n_{1} n_{2} L_{2} A_{2} I_{2}\right. \\
& =M I_{2}
\end{aligned}
$$

this is the same as before ξ is why we call M "mutual inductance"

Self - inductance

single coil w/ variable v oi tace sone generates time varying consent
$I(t) \rightarrow B(t)$ but since its a unction of time, $B(t)$ will change

$$
B(t) \propto I(t)
$$

this will produce a time vary flux $\phi(t)$ than each loop total flux $\bar{\Phi}=N \Phi \quad N=$ \# tans self inductance L defined just like M

$$
N \phi=L I
$$

for solenoid $B=\mu_{0} n T$

$$
\begin{aligned}
& \Phi=B A \\
& \Phi=N B A=\underbrace{\mu 0 N n A D}_{L}
\end{aligned}
$$

since $I(t)$ changes fen $\frac{d \Phi}{d t} \neq 0$ so there's a "back" EME around the loops

$$
\varepsilon=-\frac{d \Phi}{d t}=-\frac{d}{d t} L I=-L \frac{d T}{d t}
$$

so use $\Phi=L I$ to calculate L
$\varepsilon=-\frac{d \bar{D}}{d t}$ do calculate $\varepsilon \mu F$ coils all have a self ruductance L (aka "inductance")

Inductors in circuits
constant voltage some:
neglect resistance \& coil
 $\left(R_{\text {coil }} \ll R\right)$
coil is called "an inductor" w/ self inductance L if $V=$ constant then $I=V / R=$ constand

$$
\frac{d T}{d t}=0 \therefore B=\text { constant inside } L
$$

so no induced EMF around indue tor coils

Now make voltage semele variable

$\frac{d U}{d t} \notin 0$ so $\frac{d F}{d t} \neq 0$ so $\frac{d B}{d t} \neq 0$
so $\frac{d \Phi}{d t} \neq 0$ self will be induced ε self around inductor coils
\Rightarrow induced current will oppose current driven by voltage source
so net current will be less than I with no inductor $\Rightarrow L$ reduces ceerrent just like a resistor with some impedance
\Rightarrow all due to Faraday's law
just like a usistor, must be a voltage drop along direction of current since I i Pins are opposed, $V_{L}=\frac{L d T}{d t}$
this preserves energy conservation around the loop

note that as frequency of $V(t)$ increases, $\frac{d I}{d t}$ increases \& V_{L} increases which means induced current increases so net current decreases
\rightarrow inductors act like frequency dependent resist tor?

Energy picture
in the UR cramit the inductor acts like a resistor in reducing the current.
\Rightarrow this takes energy! inductor is pushing against power supply
power then any component is always $P>I \cdot V$
where $V=$ usitege drop across it
for inductor $V \equiv \varepsilon=2 \frac{d T}{d t}$

$$
\text { so } P=L P \frac{d T}{d t}=L \frac{d}{d t} \frac{1}{2} I^{2}=\frac{d}{d t}\left(\frac{1}{2} L I^{2}\right)
$$

power is always $\frac{d}{d t}$ energy
so the energy stored in inductor coil is

$$
U_{2}=\frac{1}{2} L I^{2}
$$

for solenoid L= manNA

$$
\begin{aligned}
u & =\frac{1}{2} \mu_{0} n N A I^{2} \quad \text { here } B=\mu_{0} n I \\
(\text { use } N=n L) & =\frac{1}{2} N A \mu_{0} n I^{2}=\frac{1}{2} n L A \mu_{0} n I^{2}
\end{aligned}
$$

$$
\begin{array}{r}
=L A \cdot \frac{\mu_{0} n^{2} I^{2}}{2}=L A \cdot \frac{\mu_{0}^{2} n^{2} I^{2}}{2 \mu_{0}} \\
=L A \frac{B^{2}}{2 \mu_{0}} \quad \text { note that } L A=\text { volume I } b \\
\text { solenidid }
\end{array}
$$

so $U=\frac{B^{2}}{2 \mu_{0}}$. Volume
so $\frac{B^{2}}{2 \mu_{0}}$ = maguetic energy deusity
\Rightarrow inductor is stoing enengy!

DC R.L circuit

close switch: $V=I R+L \frac{d I}{d t}$
Solution: dillegu

$$
\begin{aligned}
L \frac{d I}{d t} & =V-I R \\
\frac{d I}{d t} & =\frac{V}{L}-\frac{I R}{L}
\end{aligned}
$$

$\sim_{\text {must have units if } \frac{A}{S}}$
$\therefore L / R$ has units of time
let $\tau=L / R$
write as $\frac{d I}{d t}=\frac{V}{R} \frac{R}{2}-\frac{R R}{L}$

$$
=\left(\frac{V}{R}-I\right) \frac{R}{L}
$$

$$
\text { so } \begin{aligned}
\frac{d I}{\frac{V}{R}-I} & =\frac{d t}{\tau} \\
& \frac{d I}{I-V / R}
\end{aligned}=-d t / \bar{L}
$$

So $\ln (\lambda-v / R)=-\frac{t}{\tau}+k \quad$ index 1 init integral

$$
I \cdot v / R=e^{k} e^{-t / \tau}
$$

at $t=0, I=0-\therefore e^{k}=-V / R$

$\frac{d T}{d t} \rightarrow 0 \therefore$ only vara dap is a coss R

$$
\therefore I=v / R
$$

now jumper V out if circuit leaving Manly $B!$!

current will collapse causing $\frac{d I}{d t}$

$$
V_{R}+V_{L}=0 \text { now }
$$

So $I R+L \frac{d I}{d t}=0 \Rightarrow \underbrace{\frac{I}{L R}}_{\text {L }}+\frac{d T}{d t}=0$

$$
\frac{d I}{d t}=-\frac{I}{I_{0}} \Rightarrow I=I_{0} e^{-t / \tau} \text { where } I_{0}=I(t=0)
$$

$I \not I_{0}$ current decays exponentially

LC circuit

change up capacitor by change to on top, $-Q$ on bottom

$$
\begin{aligned}
& C=\theta_{0} / V \\
& \text { so } V_{C}=Q_{0} / C
\end{aligned}
$$

So will be a voltage $V_{c}=Q_{0} / C$

- close switch. This will draw current thin indueto causing a voltage drop avis C as the change is reduced.
- current thu L will cause EME that will generate induced current back towards capacitor
- induced EMF $\varepsilon=-L \frac{d I}{d t}$ will be equal to voltage across de capacitor as it discharges

$$
\frac{Q(t)}{C}=-L \frac{d I(t)}{d t}
$$

- a fer cap discharges (or as it thiesto?) then induced current (rowe h will thy to recharge

What's happens: energy density insion C decreases, increasing U_{B} inside U_{E} indue br
But they are out of phase because $\varepsilon_{L} \propto$ rate of change of I and $V_{c} \sim Q$ so I is rate f ching er of Q
so V_{L} a rate of change of rate fo change of V_{c} !
solve: $\quad \frac{Q}{C}=-L \frac{d I}{d t}=-L \frac{d^{2} Q}{d t^{2}}$

$$
\begin{gathered}
\frac{d^{2} Q}{d t^{2}}+\frac{1}{L C} Q=0 \\
\text { this : } \\
\text { SHA: } \frac{d^{2} x}{d t^{2}}+L^{2} x=0 \Rightarrow x=x_{0} \cos \omega t
\end{gathered}
$$

for $L C, \omega^{2}=1 / L C$
so $Q=Q_{0} \cos \omega t \quad\left(t=0, Q=Q_{0}=C V_{0}\right.$ and voltage across across C) charge on capacitor will oscillate
af $t=0, Q=Q_{0}=C V_{0}$
so $Q=C V_{0} \cos w t$
current the inductor:

$$
I=\frac{\delta Q}{d f}=-C v_{0} w \sin w t
$$

in caps E across αQ
in ind: $B \propto E$
$\therefore E \leqslant B$ exchange" energy
ex: $100 \mu \mathrm{~F}$ capacitor charged up 25 mH induc for

$$
\begin{aligned}
& L C=100 \times 10^{-6} \cdot 25 \times 10^{-3}=2500 \times 10^{-9} \\
& =2.5 \times 10^{-12} \\
& \omega=\frac{1}{\sqrt{L C}}=632 \times 10^{3} \mathrm{rad}[\mathrm{sec} \\
& f=\omega / 2 \pi \simeq 100 \mathrm{kH} \approx \text { oseillafon! }
\end{aligned}
$$

ex:

$$
V(t)=V_{0} \cos \omega t
$$

conservation of every: $V=\varepsilon_{L}=\frac{L d I}{d t}$
so $\quad V_{0} \cos \omega t=L \frac{d I}{d t}$
this says I $\alpha \sin w t$
solve: $\quad I=A \sin \omega t+B$

$$
\begin{aligned}
\frac{d F}{d t} & =A \omega \cos \omega t=\frac{V_{0} \cos \omega t}{L} \\
\because A & =\frac{V_{0}}{\omega L} \\
I(t) & =\frac{v_{0}}{\omega L} \sin \omega t
\end{aligned}
$$

(1) $\frac{V_{0}}{\omega L} \Rightarrow$ looks like a current, $\therefore R_{L}=w L$ looles like a resistance
for inductor, as $f T$, $R_{L} T$ so inductors do not like high frequencies

$$
L \rightarrow \text { low pass filter }
$$

(2) current and voltage are now ont of phase by 90°

$\cos \theta=\sin \phi$ and $\phi+\theta=90$
So $\sin \theta=\cos (90-\theta)$

$$
=\cos (\theta-90)
$$

so can write $I(f)=\frac{V_{0}}{\omega L} \sin \omega t$

$$
=\frac{V_{0}}{\omega L} \cos (\omega t-\pi / 2)
$$

AC circuit ul complex numbers

$$
V(t)=V_{0} \cos \omega t
$$

$V \stackrel{L}{\sim}$ make $V(t)=V_{0} e^{i \omega t}$ $=V_{0} \cos \omega t+V_{0 i \sin \omega t}$
then keep only real pent

$$
\operatorname{Re}(V(t))=V_{0} \cos \omega t
$$

now solve circuit
gain loss

$$
\begin{aligned}
& V=V_{V}=L \frac{d I}{d t} \\
& \text { so } V_{0} e^{i \omega t}=L \frac{d I}{d t} \\
& \therefore \frac{d I}{d t}=\frac{V_{0}}{2} e^{i \omega t} \\
& \therefore I=\frac{V_{0}}{i L \omega} e^{i \omega t}=-\frac{i V_{0}}{\omega L} e^{i \omega t} \\
& I=-\frac{V_{0}}{\omega L}\left(i \cos \theta+i^{2} \sin \omega t\right) \\
&=\frac{V_{0}}{\omega L}(\sin \omega t-i \cos \omega t)
\end{aligned}
$$

$$
\text { Iceep } \operatorname{Re}(I) \Rightarrow I=\frac{V_{0}}{\omega L} \sin \omega t \text { ass ave! }
$$

(i) notice: $I=\frac{V_{0}}{i \omega L} e^{i \omega t} \Rightarrow$ rewrite

$$
\begin{aligned}
V_{0} e^{i \omega t} & =I(i \omega L) \\
\text { or } V & =I(\underbrace{(i \omega L}_{\text {"reactance" }} X_{L}
\end{aligned}
$$

$X_{L}=i \omega h$ complex impedance
inductors act like resistors in AC circuits w/ complex impedance
so if we replace inductors w / X_{L} then we can use "Ohm's Law" for AC circuits easy!

$$
V=I X_{2}
$$

$L R$ circuit using complex numbers

$$
\begin{aligned}
& X_{R}=R \\
& X_{L}=i \omega L
\end{aligned}
$$

then $V=I R+I X_{L}$

$$
=I(r+i \omega h)
$$

$$
\therefore I(f)=\frac{V(t)}{R+i \omega L}
$$

now false seal pent

$$
\text { write } \begin{aligned}
\frac{1}{R+i \omega L} & =\frac{1}{R+i \omega L} \cdot \frac{R-i \omega L}{R-i \omega L}=\frac{R-i \omega L}{R^{2}+\omega^{2} L^{2}} \\
& =\frac{R-i \omega L}{\sqrt{R^{2}+\omega^{2} L^{2}}} \frac{1}{\sqrt{ }}
\end{aligned}
$$

$$
\text { let } \cos \phi=\frac{R}{\sqrt{ }}, \sin \phi=\frac{\omega L}{\sqrt{ }}
$$

$$
\tan \phi=w L k \text { let } \tau \equiv L \mathbb{R}
$$

$$
\tan \phi=\omega \tau
$$

$$
\text { so } \frac{1}{R+i \omega L}=\frac{\cos \phi-i \sin \phi}{\sqrt{R^{2}+\omega^{2} L^{2}}}=\frac{e^{-i \phi}}{\sqrt{ }}
$$

$$
\begin{aligned}
\therefore I(t) & =V_{0} e^{i \omega t} \cdot \frac{e^{-i \phi}}{\sqrt{i(\omega t-\phi)}} \\
& =\frac{V_{0}}{R} \frac{e^{i\left(\omega-\tau^{2}\right.}}{\sqrt{1+\omega^{2}}}
\end{aligned}
$$

$$
\text { Sep } \operatorname{Re}(I)=\frac{V_{0}}{R} \frac{\cos (\omega t-\phi)}{\sqrt{1+\omega^{2} \tau^{2}}}
$$

$\phi \div$ phase shift \Rightarrow gets smaller (I in phase w/V) as $L \rightarrow 0$ or $R \rightarrow \infty$
(1) inductor causes a phase change in consent wot driving voltage
$\tan \phi=\frac{\omega L}{R}=\omega \tau$
(2) as $\omega \rightarrow 0$, becomes constant voltage

$$
\begin{aligned}
& \omega \tau \rightarrow 0, \tan \phi \rightarrow 0 \Rightarrow \theta \rightarrow 0 \\
& E(t)=\frac{V_{0}}{F} \cos \omega t
\end{aligned}
$$

(3) as $w \rightarrow$ large, $I \rightarrow 0$ because $X_{L} \rightarrow \infty$ acts like a longe resistance so inductor is a low pass filter
$A C$ - capacitor

$$
\begin{aligned}
& V(t)=V_{0} e^{i \omega t} \\
& V_{c}=\frac{Q}{C}=V \text { supply } \\
& \text { so } Q=c U \\
& I=\frac{d Q}{d t}=C \frac{d V}{d t}=\frac{C d}{d t} V_{0} e^{i \omega t} \\
& \\
& =i \omega C V_{0} e^{i \omega t} \\
& \\
& =\frac{V_{0}}{X_{c}} e^{i \omega t}
\end{aligned}
$$

$\therefore X_{c}=\frac{1}{i \omega L}$ complex reactance for capacitor
and $X_{L}=i \omega L$

$$
x_{R}=R
$$

LCR circuit

gain deops

$$
\begin{aligned}
& V=I R+I X_{c}+I X_{L} \\
&=I\left(R+\frac{1}{i \omega C}+i \omega L\right) \\
& \therefore I=\frac{V_{0} e^{i \omega t}}{R+\frac{1}{i \omega C}+i \omega L} \\
& R+\frac{1}{i \omega C}+i \omega L=R-\frac{i}{\omega C}+i \omega L=R+i\left(\omega L-\frac{1}{\omega C}\right) \\
&=R+i \frac{L}{\omega}\left(\omega^{2}-\frac{1}{L C}\right)
\end{aligned}
$$

